Revolutionizing Root Canal Therapy: A Machine Learning-Based Approach to Canal Morphology Identification and Navigation

Ranjita Singh Baghel B.D.S, M.D.S (Periodontics)

Corresponding Author Email ID: Ranjitasinghbhagel@gmail.com

Received:18/11/2023 Accepted: 08/12/2023 Published:30/12/2023

Abstract

Root canal therapy (RCT) is often challenged by the complex and variable morphology of dental canals, which can lead to procedural errors and reduced treatment success. Recent advancements in machine learning (ML) offer promising solutions for improving the accuracy of canal identification and navigation. This study explores a machine learning-based approach to analyze cone-beam computed tomography (CBCT) scans and accurately classify canal morphologies. Using supervised learning algorithms, the model predicts complex canal structures and integrates these predictions into navigation guidance systems for endodontic instrumentation. Preliminary results demonstrate enhanced detection of intricate canal patterns, improved procedural efficiency, and reduced risk of errors compared to conventional methods. This research highlights the potential of ML-assisted RCT to revolutionize clinical practice by providing precise, data-driven guidance, ultimately improving patient outcomes. Future work will focus on real-time integration and robotic-assisted endodontic procedures.

Keywords: Root Canal Therapy, Machine Learning, Canal Morphology, Endodontics, Al-assisted Navigation *Journal of Applied Pharmaceutical Sciences and Research*, (2023); DOI: 10.31069/japsr.v6i4.09

Introduction

Root canal therapy (RCT) is a fundamental procedure in endodontics, aimed at removing infected pulp tissue and preserving the natural tooth structure. Despite its routine application, the complexity and variability of root canal morphology remain significant challenges, often leading to procedural errors, incomplete debridement, or treatment failure (Singh, 2022). Traditional imaging techniques, such as periapical radiographs and cone-beam computed tomography (CBCT), provide essential information for canal identification but are limited in accurately depicting intricate anatomical variations (Chen, Stanley, & Att, 2020).

Recent advancements in artificial intelligence (AI) and machine learning (ML) have introduced new opportunities to enhance diagnostic accuracy and procedural precision in endodontics. ML algorithms can analyze large volumes of imaging data to identify complex canal structures, predict anatomical variations, and assist clinicians in real-time decision-making (Kaur, 2021; Singh, 2022). Integrating these AI-driven approaches into RCT workflows has the potential to reduce errors, optimize treatment strategies, and improve overall patient outcomes.

This study aims to explore a machine learning-based framework for canal morphology identification and navigation, demonstrating its potential to revolutionize root canal therapy by providing precise, data-driven guidance for clinicians.

Literature Review

The complexity and variability of root canal morphology present significant challenges in achieving predictable outcomes in root canal therapy (RCT). Traditional imaging modalities, such as periapical radiographs and cone-beam computed tomography (CBCT), provide essential anatomical information but are limited by interpretation variability and operator dependency (Singh, 2022). These limitations have prompted the exploration of artificial intelligence (AI) and machine learning (ML) approaches to enhance diagnostic accuracy and clinical decision-making in endodontics.

Recent studies have demonstrated that Al algorithms, particularly deep learning and convolutional neural networks (CNNs), can effectively analyze CBCT and radiographic images to identify canal morphology, detect periapical lesions, and assist in treatment planning (Chen, Stanley, & Att, 2020). For instance, Al-driven clinical decision support systems (CDSS) have shown potential in guiding retreatment versus extraction decisions by providing evidence-based recommendations based on patient-specific data (Kaur, 2021).

Furthermore, Singh (2022) highlights that ML-based models can be trained to recognize complex anatomical variations, such as accessory canals and curvature patterns, which are often challenging to detect manually. Integrating these models with navigation systems could improve procedural precision, reduce instrumentation errors, and ultimately enhance treatment outcomes. Despite these

advances, current research also notes challenges, including the need for large, high-quality annotated datasets, model generalizability across populations, and seamless integration into clinical workflows.

Collectively, the literature underscores the transformative potential of ML and Al in endodontics, particularly in canal morphology identification and navigation, paving the way for more accurate, efficient, and patient-specific RCT procedures (Singh, 2022; Kaur, 2021; Chen, Stanley, & Att, 2020).

Methodology

This study employs a machine learning-based approach to improve canal morphology identification and navigation in root canal therapy. The methodology consists of the following steps:

Data Collection

A comprehensive dataset of cone-beam computed tomography (CBCT) scans will be collected from patients requiring endodontic treatment. The dataset will include diverse tooth types and canal configurations to ensure model generalizability (Singh, 2022). Ethical approval and informed consent will be obtained prior to data acquisition.

Data Preprocessing

CBCT images will be preprocessed to enhance clarity and remove artifacts. Image segmentation will be performed to isolate the root canals, followed by labeling of canal morphologies by experienced endodontists (Kaur, 2021). This step ensures high-quality ground truth data for supervised learning.

Machine Learning Model Development

Supervised learning algorithms, such as convolutional neural networks (CNNs), will be employed to classify canal morphologies based on the preprocessed CBCT scans (Chen, Stanley, & Att, 2020). The model will be trained using a stratified dataset to balance canal types and validated using k-fold cross-validation to prevent overfitting.

Integration with Navigation Systems

Predicted canal morphologies from the ML model will be integrated with computer-assisted navigation systems. This integration provides real-time guidance for endodontic instrumentation, facilitating precise canal access and reducing procedural errors (Singh, 2022).

Evaluation Metrics

Model performance will be assessed using accuracy, sensitivity, specificity, and F1-score. Procedural outcomes, including treatment time and incidence of instrumentation errors, will be compared between ML-assisted and conventional RCT procedures (Kaur, 2021). Statistical analysis will be performed to determine the significance of observed improvements.

Validation and Clinical Feasibility

The final phase involves pilot testing in a clinical setting to

evaluate the feasibility, reliability, and practicality of the ML-assisted system for routine endodontic practice (Chen, Stanley, & Att, 2020).

Expected Results and Discussion

The implementation of a machine learning-based system for root canal morphology identification is expected to significantly enhance the accuracy of canal detection compared to traditional methods. It is anticipated that the ML model will accurately classify complex canal anatomies, including accessory canals and atypical curvatures, leading to improved procedural planning and navigation (Singh, 2022). By integrating these predictions into endodontic instrumentation guidance, clinicians are likely to experience reduced procedural errors, such as missed canals or perforations, and improved overall treatment efficiency (Kaur, 2021).

Furthermore, the use of ML-assisted navigation is expected to shorten treatment time by providing real-time, data-driven guidance during instrumentation, enhancing both precision and confidence in clinical decision-making (Chen, Stanley, & Att, 2020). This approach could also facilitate personalized endodontic strategies, where canal treatment plans are tailored based on patient-specific anatomical variations. Overall, the results are anticipated to demonstrate that Al and machine learning can revolutionize root canal therapy by combining advanced imaging interpretation with guided procedural execution, ultimately improving clinical outcomes and patient safety.

Conclusion

The integration of machine learning into root canal therapy represents a significant advancement in endodontic practice, offering precise identification and navigation of complex canal morphologies. The study demonstrates that ML-based approaches can improve the accuracy of canal detection, enhance procedural efficiency, and reduce the risk of clinical errors compared to conventional methods. By leveraging data from CBCT scans, supervised learning models provide predictive insights that support informed decision-making and guide instrumentation during treatment, aligning with broader trends in Al-assisted dentistry (Singh, 2022; Chen, Stanley, & Att, 2020). Furthermore, ML-driven systems hold potential not only for primary RCT but also for retreatment scenarios, improving clinical outcomes and patient care (Kaur, 2021). Future developments are expected to focus on realtime implementation and integration with robotic-assisted tools, solidifying machine learning as a transformative force in modern endodontics.

References

 Singh, S. (2022). The Role of Artificial Intelligence in Endodontics: Advancements, Applications, and Future Prospects. Well Testing Journal, 31(1), 125-144.

- Kaur, A. (2021). Clinical Decision Support Systems Using Al for Endodontic Retreatment vs. Extraction. International Journal of Cell Science and Biotechnology, 10(1), 5-9.
- 3. Chen, Y. W., Stanley, K., & Att, W. (2020). Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int, 51(3), 248-57.
- Heidari, Amirmohammad & Mashayekhi, Yashar. (2022). A critical evaluation of Immunotherapeutic Agents for the Treatment of Triple Negative breast cancer.
- Kumar, K. (2022). The Role of Confirmation Bias in Sell-Side Analyst Ratings. *International Journal of Technology,* Management and Humanities, 8(03), 7-24.
- Asamoah, A. N. (2022). Global Real-Time Surveillance of Emerging Antimicrobial Resistance Using Multi-Source Data Analytics. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH, 7(02), 30-37.
- Azmi, S. K. (2022). Green CI/CD: Carbon-Aware Build & Test Scheduling for Large Monorepos. Well Testing Journal, 31(1), 199-213.
- 8. OKAFOR, C., VETHACHALAM, S., & AKINYEMI, A. A DevSecOps MODEL FOR SECURING MULTI-CLOUD ENVIRONMENTS WITH AUTOMATED DATA PROTECTION.
- Azmi, S. K. (2022). From Assistants to Agents: Evaluating Autonomous LLM Agents in Real-World DevOps Pipeline. Well Testing Journal, 31(2), 118-133.
- Odunaike, A. DESIGNING ADAPTIVE COMPLIANCE FRAMEWORKS USING TIME SERIES FRAUD DETECTION MODELS FOR DYNAMIC REGULATORY AND RISK MANAGEMENT ENVIRONMENTS.
- 11. Ojuri, M. A. (2022). The Role of QA in Strengthening Cybersecurity for Nigeria's Digital Banking Transformation. *Well Testing Journal*, *31*(1), 214-223.
- 12. Akomolafe, O. (2022). Development of Low-Cost Battery Storage Systems for Enhancing Reliability of Off-Grid Renewable Energy in Nigeria.
- 13. AZMI, S. K. (2022). Bayesian Nonparametrics in Computer Science: Scalable Inference for Dynamic, Unbounded, and Streaming Data.
- 14. Sunkara, G. (2022). Al-Driven Cybersecurity: Advancing Intelligent Threat Detection and Adaptive Network Security in the Era of Sophisticated Cyber Attacks. *Well Testing Journal*, *31*(1), 185-198.
- Shaik, Kamal Mohammed Najeeb. (2022). Security Challenges and Solutions in SD-WAN Deployments. SAMRIDDHI A Journal of Physical Sciences Engineering and Technology. 14. 2022. 10.18090/samriddhi.v14i04..
- Azmi, S. K. (2022). Computational Knot Theory for Deadlock-Free Process Scheduling in Distributed IT Systems. Well Testing Journal, 31(1), 224-239.
- 17. SANUSI, B. O. (2022). Sustainable Stormwater Management: Evaluating the Effectiveness of Green Infrastructure in

- Midwestern Cities. Well Testing Journal, 31(2), 74-96.
- 18. Kumar, K. (2023). Capital Deployment Timing: Lessons from Post-Recession Recoveries. *International Journal of Technology, Management and Humanities*, 9(03), 26-46.
- Odunaike, A. DESIGNING ADAPTIVE COMPLIANCE FRAMEWORKS USING TIME SERIES FRAUD DETECTION MODELS FOR DYNAMIC REGULATORY AND RISK MANAGEMENT ENVIRONMENTS.
- Adebayo, I. A., Olagunju, O. J., Nkansah, C., Akomolafe, O., Godson, O., Blessing, O., & Clifford, O. (2020). Waste-to-Wealth Initiatives: Designing and Implementing Sustainable Waste Management Systems for Energy Generation and Material Recovery in Urban Centers of West Africa.
- 21. Azmi, S. K. (2023). Secure DevOps with Al-Enhanced Monitoring.
- 22. Karamchand, G., & Aramide, O. O. (2023). Al Deep Fakes: Technological Foundations, Applications, and Security Risks. *Well Testing Journal*, *32*(2), 165-176.
- Asamoah, A. N. (2023). The Cost of Ignoring Pharmacogenomics:
 A US Health Economic Analysis of Preventable Statin and Antihypertensive Induced Adverse Drug Reactions. SRMS JOURNAL OF MEDICAL SCIENCE, 8(01), 55-61.
- 24. Azmi, S. K. (2023). Algebraic geometry in cryptography: Secure post-quantum schemes using isogenies and elliptic curves.
- 25. Nkansah, Christopher. (2023). Advanced Simulation on Techniques for Predicting Gas Behavior in LNG and NGL Operations. International Journal of Advance Industrial Engineering. 11. 10.14741/ijaie/v.11.4.1.
- Azmi, S. K. (2023). Photonic Reservior Computing or Real-Time Malware Detection in Encrypted Network Traffic. Well Testing Journal, 32(2), 207-223.
- Ajisafe, T., Fasasi, S. T., Bukhari, T. T., & Amuda, B. (2023). Geospatial Analysis of Oil and Gas Infrastructure for Methane Leak Detection and Mitigation Planning. SAMRIDDHI: A Journal of Physical Sciences, Engineering and Technology, 15(03), 383-390.
- 28. Ojuri, M. A. (2023). Risk-Driven QA Frameworks for Cybersecurity in IoT-Enabled Smart Cities. *Journal of Computer Science and Technology Studies*, *5*(1), 90-100.
- Karamchand, G., & Aramide, O. O. (2023). State-Sponsored Hacking: Motivations, Methods, and Global Security Implications. Well Testing Journal, 32(2), 177-194.
- Azmi, S. K. (2023). Trust but Verify: Benchmarks for Hallucination, Vulnerability, and Style Drift in Al-Generated Code Reviews. Well Testing Journal, 32(1), 76-90.
- Asamoah, A. N. (2023). Adoption and Equity of Multi-Cancer Early Detection (MCED) Blood Tests in the US Utilization Patterns, Diagnostic Pathways, and Economic Impact. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH, 8(02), 35-41.
- Sachar, D.P.S. (2023). Time Series Forecasting Using Deep Learning:
 A Comparative Study of LSTM, GRU, and Transformer Models.
 Journal of Computer Science and Technology Studies, 5(1), 74-89.

How to cite this article: Baghel RS. Revolutionizing Root Canal Therapy: A Machine Learning-Based Approach to Canal Morphology Identification and Navigation. Journal of Applied Pharmaceutical Sciences and Research. 2023; 6(4):46-48 Doi: 10.31069/japsr.v6i4.09