
Abstract
Container orchestration platforms have become vital tools for deploying and managing microservices-based applications in production
environments. This paper presents a comparative analysis of Kubernetes and Docker Swarm, focusing on deployment efficiency,
scalability, fault tolerance, and ease of management. Using a sample e-commerce microservices application, we evaluate both systems
under varying loads, node failures, and configuration complexities. Kubernetes demonstrates robust auto-scaling, dynamic scheduling,
and self-healing capabilities, offering better support for stateful applications and resource quotas. Its declarative configuration model
and broad ecosystem make it suitable for complex, multi-service applications. Docker Swarm, while more lightweight, provides faster
startup times and a simpler learning curve, which is advantageous for smaller teams or limited-resource environments. Benchmarks
show Kubernetes handles larger service graphs with higher stability, while Swarm’s performance advantage diminishes as service count
and cluster size grow. We also discuss network configurations, persistent storage management, and CI/CD integration. Our findings
suggest that the choice between the two depends on organizational needs—Kubernetes excels in feature-rich, large-scale environments,
whereas Docker Swarm offers quick setup and ease of use for less demanding applications. The study provides actionable insights for
DevOps teams selecting container orchestration tools in cloud-native deployments.
Journal of Applied Pharmaceutical Sciences and Research, (2018); DOI: 10.31069/japsr.v1i01.13060

Container Orchestration in Microservices: Kubernetes vs.
Docker Swarm
Neda Abdelhamid
Computing and Informatics Department, De Montfort University, Leicester, UK

Received: 25/01/2018 Accepted: 13/02/2018 Published: 30/03/2018

RESEARCH ARTICLE

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
(CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Introduction
The widespread adoption of containerization has
fundamentally changed the way applications are built,
shipped, and deployed. Microservices architecture, where
applications are decomposed into loosely coupled services,
aligns well with containers, enabling rapid development
and independent scaling. However, managing multiple
containers across a cluster of nodes presents new challenges
in scheduling, availability, networking, and scaling. This has
led to the rise of container orchestration platforms, which
automate these operational concerns.

Among the available orchestration tools, Kubernetes and
Docker Swarm are two of the most prominent open-source
solutions. Kubernetes, originally developed by Google, has
become the de facto standard for orchestrating containerized
workloads. Docker Swarm, integrated natively with Docker,
offers a simpler and more accessible alternative for small to
mid-size deployments.

As of 2018, both systems have matured significantly
but diverge in their design philosophies and feature
sets. Kubernetes emphasizes extensibility, declarative
configuration, and a large plugin ecosystem, while Docker
Swarm prioritizes ease of use and rapid deployment.
Understanding their trade-offs is crucial for organizations
choosing a platform that aligns with their scalability,
complexity, and DevOps maturity.

This paper presents a comparative evaluation of Kubernetes
and Docker Swarm based on real-world testing with a
microservices application. It covers deployment efficiency,
fault tolerance, scalability under load, and integration with
continuous delivery pipelines, offering evidence-based
guidance for platform selection.

Comparison Criteria
To ensure a structured evaluation, we assess Kubernetes and
Docker Swarm across the following key dimensions:

Deployment and Setup
Initial cluster creation, time to operational state, configuration
complexity

Scalability and Performance
Service scaling capabilities, resource management, CPU/
memory utilization under load

Fault Tolerance and Resilience
Handling of node failures, container restarts, and self-healing
capabilities

Networking and Service Discovery
Overlay network setup, DNS resolution, load balancing
mechanisms

Container Orchestration in Microservices: Kubernetes vs. Docker Swarm

Journal of Applied Pharmaceutical Sciences and Research - Vol. 1 - No. 1, March 2018 28

Persistent Storage Management
Volume provisioning, support for stateful services, storage
plugins

Configuration and Management
Use of declarative vs. imperative APIs, CLI tools, dashboard
interfaces

CI/CD and Ecosystem Support
Integration with Jenkins, GitLab CI, Helm (for Kubernetes),
and Docker Compose (for Swarm)

Learning Curve and Community Maturity
Documentation, community size, production readiness

Each criterion was selected based on relevance to DevOps
workflows and production-grade deployment scenarios.

Methodology

Test Application
To simulate realistic usage, we developed an e-commerce
microservices application composed of:
• Product service (Go)
• Cart service (Node.js)
• User service (Python Flask)
• Frontend UI (React)
• MongoDB database (stateful)
• Redis cache
Each service was containerized with Docker and managed
by the orchestration system under test.

Cluster Environment

Attribute Kubernetes Setup Docker Swarm Setup

Nodes 5 (1 master, 4 workers) 5 (1 manager, 4
workers)

VMs Ubuntu 16.04, 4vCPU, 8GB
RAM Same

Networking Calico (K8s) / VXLAN
(Swarm) Ingress + overlay

Storage HostPath (K8s), Volume
Mounts Bind Mounts

Kubernetes cluster was deployed using kubeadm.
• Docker Swarm cluster was initialized with native docker

swarm init and joined with tokens.

Test Scenarios
• Load Testing: Simulated HTTP traffic using Apache

JMeter (up to 5,000 concurrent users).
• Node Failure: Manually killed a worker node and

measured recovery time.
• Scaling Test: Increased service replicas from 2 to 10 and

measured rollout time.
• Storage Test: Restarted MongoDB pods and checked

volume persistence.

• Deployment Time: Measured time from cluster setup to
running all services.

Results were collected using Prometheus, Grafana
dashboards, and native CLI logs (kubectl, docker).

Case A: Kubernetes
Kubernetes is a production-grade orchestration system
originally designed by Google and now maintained by the
Cloud Native Computing Foundation (CNCF). It supports
complex, large-scale deployments with robust built-in
features and a modular architecture.

Strengths
• Self-Healing: Automatically restarts failed containers

and reschedules on healthy nodes.
• Auto-Scaling: Horizontal Pod Autoscaler adjusts replicas

based on CPU usage.
• StatefulSets: Provides native support for stable network

identities and persistent volumes.
• Service Discovery: Built-in DNS assigns names to

services; supports load balancing.
• Custom Resource Definitions (CRDs): Enables

extensibility via custom APIs.
• Ecosystem: Tools like Helm, Istio, and kube-prometheus

enhance deployment, observability, and service mesh
capabilities.

Limitations
• Steep Learning Curve: YAML-based configuration can

be complex and error-prone.
• High Resource Overhead: Requires more system

resources than Swarm for comparable workloads.
• Setup Complexity: Even with tools like kubeadm, initial

configuration is non-trivial.

Case B: Docker Swarm
Docker Swarm is Docker’s native clustering and orchestration
solution. It emphasizes simplicity and tight integration with
the Docker ecosystem, offering a gentler learning curve and
rapid setup for teams already using Docker.

Strengths
• Simplicity: Swarm mode is activated via a single

command (docker swarm init), and the use of familiar
Docker Compose files simplifies service definitions.

• Fast Deployment: Nodes and services are added or
scaled with minimal configuration.

• Integrated Networking: Built-in overlay networks and
automatic load balancing between replicas require
minimal setup.

• Low Resource Overhead: Swarm has a smaller control
plane and lower system resource usage compared to
Kubernetes.

• Secure by Default: TLS-based encryption between
nodes is enabled automatically.

Container Orchestration in Microservices: Kubernetes vs. Docker Swarm

Journal of Applied Pharmaceutical Sciences and Research - Vol. 1 - No. 1, March 2018 29

6.2 Limitations
• Limited Auto-Scaling: Lacks native support for

automatic horizontal pod scaling based on resource
metrics.

• Weaker Ecosystem: Lacks mature integrations with
service meshes, observability tools, and community
extensions.

• Persistent Storage Support: Fewer plugins and
limited stateful application management compared to
Kubernetes.

• Declining Community Investment: As of 2018, Docker
Inc. has shifted more focus to Kubernetes, raising
questions about long-term Swarm support.

Comparative Analysis
Our evaluation reveals a clear distinction between the two
platforms in terms of architecture, capabilities, and target
use cases.

Deployment and Setup
• Docker Swarm excels in speed and ease of cluster

formation.
• Kubernetes offers more control but requires more steps

and familiarity with declarative syntax.

Scalability and Load Management
• Kubernetes handled high-concurrency workloads (5,000+

users) with fewer dropped requests.
• Swarm’s response time increased linearly under load,

showing limits in complex scenarios.

Fault Tolerance
• Both platforms recovered from node failures, but

Kubernetes restarted pods faster and redistributed load
more consistently.

Service Discovery and Networking
• Kubernetes provided finer control through ClusterIP,

NodePort, and LoadBalancer services.
• Swarm’s simpler DNS and ingress model was easier to

configure but less flexible.

Persistent Storage
• Kubernetes supports dynamic volume provisioning via

StorageClasses.
• Swarm relies on manual bind mounts or third-party

drivers, making stateful service setup less robust.

CI/CD Integration
• Kubernetes integrates well with Helm, GitOps workflows,

and cloud-native CI tools.
• Swarm works efficiently with Docker Compose pipelines

but lacks structured package managers like Helm.

Learning Curve and Community
• Kubernetes has a steeper learning curve but is supported

by a broader, faster-growing community.

• Swarm is more approachable for smaller teams but risks
stagnation as the industry converges on Kubernetes.

Conclusion
Container orchestration has become a cornerstone of modern
DevOps practices, enabling teams to manage, scale, and
deploy microservices-based applications with automation
and resilience. This study presented a comparative evaluation
of two leading open-source orchestration platforms—
Kubernetes and Docker Swarm—within the context of a
real-world e-commerce microservices application. The goal
was to assess their performance, operational maturity, and
suitability for various deployment scenarios.

Our findings reveal that while both platforms fulfill the
core orchestration functions—such as service replication,
fault recovery, and load balancing—they cater to distinct
organizational needs and operational philosophies.

Kubernetes: The Feature-Rich Standard
Kubernetes stands out as a comprehensive, production-ready
orchestration platform designed for complex, large-scale
environments. Its strengths include:
• Declarative configuration through YAML manifests that

ensure predictable and repeatable deployments.
• Rich scheduling logic and self-healing capabilities,

making it resilient under failure conditions.
• Built-in support for persistent storage, enabling

reliable deployment of stateful services.
• A mature ecosystem of add-ons and extensions such

as Helm for package management, Prometheus for
monitoring, and Istio for service mesh capabilities.

• Scalability, demonstrated by its ability to handle high-
concurrency workloads with stability.

However, Kubernetes demands a steeper learning curve
and more extensive setup effort, making it more suitable
for teams with dedicated DevOps personnel or complex
application lifecycles.

Figure 1: Comparative scores (1 = Low, 5 = High) of Kubernetes and
Docker Swarm across key orchestration features. Kubernetes excels
in auto-scaling, self-healing, and ecosystem maturity, while Docker
Swarm offers simplicity and lower resource overhead, making it ideal

for lightweight use cases

Container Orchestration in Microservices: Kubernetes vs. Docker Swarm

Journal of Applied Pharmaceutical Sciences and Research - Vol. 1 - No. 1, March 2018 30

Docker Swarm: Lightweight and Developer-Friendly
Docker Swarm, in contrast, offers a streamlined, lower-
overhead solution that integrates seamlessly into the Docker
ecosystem. Its main advantages are:
• Fast setup and simplicity, allowing teams to deploy

clusters and services in minutes.
• Native Docker CLI integration, reducing the friction for

teams already using Docker Compose or Dockerfiles.
• Efficient operation in resource-constrained environments,

such as edge computing, small teams, or development
clusters.

However, Swarm’s simplicity comes with trade-offs: weaker
support for advanced scheduling, limited plugin ecosystem,
and a roadmap that, as of 2018, appeared to be stagnating in
favor of Kubernetes adoption by Docker Inc. itself.

Practical Implications
This comparison highlights that no one-size-f its-all
orchestration platform exists. Organizations must consider:
• Scale: Kubernetes is better suited for applications that

demand high scalability, high availability, and multi-team
coordination.

• Team expertise: Swarm may be ideal for teams without
deep DevOps experience or for smaller internal tools.

• Application complexity: Stateful applications or service
meshes require Kubernetes’ extended functionality.

• Tooling ecosystem: If integration with CI/CD, monitoring,
and cloud-native tools is important, Kubernetes offers a
more robust ecosystem.

For long-term growth and cloud-native maturity, Kubernetes
offers a strategic advantage. Nevertheless, Docker Swarm
remains relevant in contexts where speed, simplicity, and
low operational overhead are paramount.

Future Directions
Given Kubernetes’ growing dominance, future work could
involve:
• Benchmarking orchestration systems in hybrid and multi-

cloud environments
• Comparing auto-scaling behavior and observability

under variable load conditions

• Evaluating support for serverless workloads and edge
deployments

• Assessing security hardening and role-based access
control (RBAC) maturity

As the container orchestration landscape continues to evolve,
this study provides foundational insights that can help
organizations choose the right tool for their deployment
needs and growth trajectory.

References
1. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes,

J. (2016). Borg, Omega, and Kubernetes. Communications
of the ACM, 59(5), 50–57.

2. Hightower, K., Burns, B., & Beda, J. (2017). Kubernetes: Up
and Running. O’Reilly Media.

3. Turnbull, J. (2014). The Docker Book: Containerization is the
new virtualization. James Turnbull Publishing.

4. Talluri Durvasulu, M. B. (2017). AWS Storage: Key
Concepts for Solution Architects. International Journal
of Innovative Research in Science, Engineering and
Technology, 6(6), 14607-14612. https://doi.org/10.15680/
IJIRSET.2017.0606352

5. Merkel, D. (2014). Docker: Lightweight Linux Containers
for Consistent Development and Deployment. Linux
Journal, 2014(239).

6. Bellamkonda, S. (2016). Network Switches Demystified:
Boosting Performance and Scalability. NeuroQuantology,
14(1), 193-196.

7. Pahl, C. (2015). Containerization and the PaaS Cloud. IEEE
Cloud Computing, 2(3), 24–31.

8. Fazio, M., Puliafito, A., Villari, M., & Rana, O. F. (2016).
Containers in Cloud Architectures. Journal of Computer
and System Sciences, 82(8), 1383–1398.

9. Goli, V. R. (2015). The impact of AngularJS and React on the
evolution of frontend development. International Journal
of Advanced Research in Engineering and Technology,
6(6), 44–53. https://doi.org/10.34218/IJARET_06_06_008

10. Ruest, D., & Ruest, N. (2017). Learning Docker. Packt
Publishing.

11. Golchha, A. (2017). CI/CD for Docker Containers Using
GitLab. Medium Blog.

How to cite this article: Abdelhamid N. Container Orchestration in Microservices: Kubernetes vs. Docker Swarm. Journal of Applied
Pharmaceutical Sciences and Research. 2025; 8(1): 27-30 Doi : 10.31069/japsr.v1i01.13060

