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Introduction: Present leishmaniasis treatment regimen has many limitations including severe adverse effects, toxicity, and 
Leishmania strains resistance. In the present study, the objective is to perform QSAR, molecular docking and ADME prediction studies 
on benzimidazolylchalcones in order to select an antileishmanial drug candidate. 
Materials & methods: QSAR models were performed on 12 benzimidazolylchalcones with antileishmanial activities against promastigote 
strains of L. donovani. Binding free energy calculations were performed using MM-GBSA to assess the affinity of the ligands for the proteins. 
In addition, the three most active compounds (4a-c, IC50 <1-µM) were docked with the protein phosphodiesterase B1 (PDB ID: 2JK6). 
Results and Discussion: The optimum model has squared correlation coefficient (R2) of 0.983, and leave-one-out (LOO) cross-validation 
coefficient (Q2

CV) value of 0.942. The number of descriptors involved in the model is acceptable (R2 - Q2
CV = 0.041), which confirms the 

model’s stability and validates the developed model’s predictive power. Docking studies revealed that the best compound 4c formed 
hydrogen bond with SER 464, pi-cation contact with LYS 61 and hydrophobic interactions with LEU 62, TYR 64 and LEU72 of the active site 
of L. donovani phosphodiesterase B1. ADME properties results showed that all three molecules have good pharmacokinetic properties. 
Conclusion: Finally, molecular dynamics simulation studies at 30 ns revealed stable interactions with the 2JK6 protein. This study validates 
the choice of the ortho-chlorinated derivative of benzimidazolylchalcones as the lead compound for developing new derivatives with 
optimized antileishmanial properties.
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In t r o d u c t I o n

Leishmaniasis is an infectious disease transmitted by the 
female sandfly that has claimed more than 12 million victims 
worldwide in recent years.[1] Its co-infection with HIV-AIDS is 
also a major public health problem, as more than a thousand 
resistant strains have recently been isolated from patients 
living with HIV.[1] At present, no vaccine has been developed. 
Existing treatments such as pentamidine derivatives in the 
first line, and amphotericin B in the second line, are not 
only very toxic and costly, but above all have shown their 
ineffectiveness against chemo-resistant strains that are 
becoming increasingly widespread.[1] Hence, the researchers 
focused their interest on the design of new low-cost, low-
toxicity potential anti-leishman drugs. Therefore, we have 
been interested in heteroaryl-chalcones which have been 
shown to possess various pharmacological properties 
including anti-infectious and anti-parasitic antileishmanial 
activities. [2] Through analyses carried out on several studies, 
we observed that the particularity of the pharmacological 
activities presented by the heteroaryl-chalcones was related 
to the nature of the heteroaryl associated with the chalcones.
[2-5] Thus, in order to obtain targeted antileishmanial 
activities, benzimidazolyl-chalcones were designed as a 
result of the juxtaposition of the benzimidazole ring and the 
arylpropenone chain of the chalcones. These two chemical 

© The Author(s). 2021  Open Access This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 
(CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/)



Molecular Modeling Studies of Benzimidazolyl-Chalcones as Antileishmanial Agents

Journal of Applied Pharmaceutical Sciences and Research, July-September, 2021; 4(3) 19

entities have previously shown strong antileishmanial 
potentialities. Indeed, the benzimidazole ring, present in a 
large number of biologically active compounds, is known 
to possess remarkable antiprotozoal properties.[5,6] Also, 
in a specific way, recent studies have highlighted the anti-
infectious potential of benzimidazole and its derivatives 
as powerful antileishmanial agents.[7,8] Moreover, the 
substitution of this heteroaryl by a functional group in its 
position 2 seems judicious because most of the biologically 
active compounds generally carry a functional group in this 
position.[6] As for the arylpropenones, known anti-infectives, 
antiprotozoals, they have been shown to be potent inhibitors 
of the development of several species of the genus Leishmania 
both in vitro and in vivo with low cytotoxicity.[1,8] Therefore, 
on this rational basis of the different antileishmanial results 
obtained for the benzimidazole ring and the arylpropenone 
chain, the association of these two chemical entities for 
the development of new antileishmanial drug candidates 
seemed to be judicious. In a previous study, our team 
showed that benzimidazolyl-chalcones were endowed 
with antileishmanial properties.[9] SAR studies, summarized 
in Figure 1, led to the characterization of a lead compound 
(ortho chloro derivative 4c) that showed very good in vitro 
activity against the promastigote stage of L. donovani.[9]

Subsequently in this study, ligand drug design approach 
such as quantitative structure-activity relationship studies 
(QSARs) of antileishmanial benzimidazolyl-chalcone 
compounds have been undertaken to establish a molecular 
model capable of predicting the biological activity of future 
analogues.[10] Indeed, QSARs are an innovative, efficient and 
rational tool in molecular modeling studies, particularly 
useful in the development of molecular leads with specific 
activity orientation.

The objective assigned to the present study is to highlight 
the expected chemical properties of future benzimidazolyl-
chalcone analogues for antileishmanial purposes from the 
interpretation of the constructed QSAR model. Thus, DFT 
reactivity descriptors have been determined to optimize the 
compounds and predict their reactivity. The multiple linear 
regression (MLR) method was used to select the descriptors 
and to establish the correlation model that links the structural 
features of the compounds to their biological activities. 

Moreover, QSARs can be coupled with structure-based 
drug design such as molecular docking, MM-GBSA and 
molecular dynamics, which highlight the best bonds 

Figure 1: SAR of benzimidazolyl-chalcone derivatives as 
antileishmanial agents
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and conformation of a ligand with its protein target and 
their stability. The combination of these tools allows the 
conceptualization of a pharmacophore whose interactions 
with the specific target are optimized. Therefore, we have 
performed the molecular docking, MM-GBSA and molecular 
dynamics of the three compounds with the best activities 4a, 
4b and 4c, with Leishmania phosphodiesterase B1 (PDB ID: 
2JK6).[11] Moreover, ADME properties were predicted using 
QikProp module of Schrödinger suite. [12] Furthermore, we 
investigated the interaction of the designed hybrids with the 
binding site of this enzyme, in order to gain structural insight 
for improved antileishmanial activity.

MAt e r I A l s A n d Me t h o d s

Experimental Data Base
The present study was conducted on a pool of twelve 
benzimidazolyl-chalcones. The benzymidazolyl-chalcones 
(4a-l) result from the condensation of 2-acetylbenzimidazole 
(3a-c) with various benzaldehydes by the Claisen-Schmidt 
reaction.[13] 

The obtained molecules were characterized by 1H NMR 
(300MHz) and 13C NMR (75 MHz). They were then evaluated 
for their anti-leishmanial activities, according to the in vitro 
method of live cell counting or quantitative colorimetric assay 
by methyltretazolium (MTT test) on LV9 strains of Leishmania 
donovani in the previous paper.[10] 

The anti-L. donovani activities of the benzimidazolyl-
chalcone derivatives studied are reported in the Table 1.

In addition, the strategy for developing a QSAR model 
requires the establishment of a structure-activity database 
from quantitative, reliable and normalized experimental 
measurements of the target activity expressed in molar 
concentration c, for each compound in the series studied.
[14,15] For this purpose, the homogeneity and normality 
of the experimental data was ensured by converting the 
concentrations obtained into logarithm (log) according to 
the expression:

1
Log

C

This is indeed a way to make the distribution of 
biological data normal without changing the information 
contained in the dataset. Representation of the structures 
and determination of the descriptors. The structures of our 
antileishmanial benzimidazolylchalcone molecules were 
represented in 3D and then optimized using Gaussian 5.0 
software. 

Subsequently, on these optimized structures, frequency 
calculations were performed by DFT at the B3LYP/6-
31++G level through the Gaussian 5.0 software which 
integrates quantum mechanical algorithms. These frequency 
calculations provided the electronic quantum descriptors 
of electronic energy, boundary molecular orbital energies 
(EHOMO, ELUMO), dipole moment μ and polarizability. Global 
reactivity descriptors were subsequently calculated from 
these data. In fact, for this study, we chose to focus on 
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Table I: Benzylmidazolyl-chalcones derivatives and their anti-L. donovani activities

Structure Compounds R / Ar

L. donovani

IC50 (mg /L) IC50 µM

N
H

N
Cl

O

R

N
H

N
Cl

O

Ar

4a H 0.15 0.53 ± 0.05

4b 3-OH 0.15 0.50 ± 0.05

4c 2-Cl 0.15 0.47 ± 0.04

4d 3-NO2 24.4 74.45 ± 7.44

4e 4-CH3 0.31 1.04 ± 0.10

4f 4-Cl 7.80 24.59 ± 2.46

4g 2,4-diCl 0.63 1.79 ± 0.18

4h
O

0.31 1.14 ± 0.11

4i
N

3.90 13.79 ± 1.38

N
H

N
F

O Cl

4j 0.40 1.33 ± 0.13

N
H

N

O Cl

NO2O

4k 45.70 100.80 ± 10.08

N
H

N

O

N

O

4l 18.60 43.07 ± 4.30

global reactivity descriptors of molecules because they are 
widely used to understand the overall chemical nature of 
the molecule and predict their chemical reactivity.[16] The 
determined descriptors are energy gap or HOMO-LUMO gap 
ΔE, Electron Affinity (EA), Ionic Energy (IE), electronegativity 
χ, chemical potential µ, hardness η, molarity S, and 
electrophilicity index ω. Besides these global descriptors of 
reactivity, we determined from the ACD/ Chemskech software 
the Log P or Octanol/Water partition coefficient of each of 
the studied molecules. This is an important physicochemical 
descriptor that can help predict the pharmacological 
activity of a compound because its transport, its passage 
through membranes and its pharmacological activity can 
be conditioned by its partition between a lipid phase and 
an aqueous phase.[15,16] The determination of molecular 
descriptors is an essential step in the establishment of the 
molecular model because they play a fundamental role in 
quantitative structure-activity relationship studies. They 
are the end result of a logical mathematical procedure 
that transforms the chemical information encoded in a 
representation of a molecule into a useful numerical value.
[14] They are used as independent variables to predict a 
dependent variable (activity). 

QSAR Model Development and Statistical Analysis
The development of the QSAR model from our pool of 
benzymidazolyl-chalcone molecules involved the use of the 
statistical analysis method of top-down MLR multiple linear 
regression which allows quantifying the relationship that 
exists between the biological activity under consideration 
and the structure (via descriptors) on the series of compounds 
in the training set. This method is implemented in the XLSTAT 
version 2017 software used for this purpose. Through this tool, 
the pool of studied molecules has been randomly subdivided 
into a training set (8 molecules) and a validation set (4 
molecules). Subsequently, the MLR allowed the selection of 
descriptors that characterize the molecular structures of the 
compounds in the database in relation to the target activity 
in order to link them numerically to the experimental activity 
studied. The final choice of descriptors for the model is based 
on two fundamental criteria according to Vesserau.[17,18] The 
first criterion requires that there be a dependency between 
the activity being studied and the descriptors selected. This 
suggests that for each selected descriptor, |R|≥ 0.5, where R 
is the linear regression coefficient:[17-19]

R = cov (X,Y)/ SX.SY
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aij = cov (Xi,Yj)/ var (Xi)

With cov (X,Y): Covariance of the two variables X and Y
 SX: Standard deviation of the variable X
 SY: Standard deviation of the variable Y.

The second criterion indicates that the selected 
descriptors must be independent of each other. This is 
verified when aij< 0.70 where aij is the partial correlation 
coefficient between the pairs of descriptors i and j.[17,19] 

aij = cov (Xi,Yj)/ var (Xi)

R and aij are computed by XLSTAT.
The QSAR model was established through the final 

equation taking into account the pre-selected descriptors 
which highlights the relationship between descriptors and 
data in the form of the following general equation.[15,20]

0
1

n

i i
i

y a a x
=

= + ∑

With 
 y: biological activity studied
 xi: descriptors
  a0, ai: corresponding regression coefficients of the 

statistical model.
Each regression coefficient must be significant with  

t < 0.05 calculated from a Student’s t-test (t being the value 
calculated according to Student’s t-test and 0.05 being the 
appropriate critical value in the Student’s table).

Once developed, the quality of our obtained QSAR model 
was verified by a series of statistical tests grouped into two 
categories of criteria that are the internal validation criteria 
and the external validation criteria. The internal validation 
criteria reflect the degree of fit and robustness while the 
external validation criteria relate to the predictability of our 
model. Thus, the goodness of fit was evaluated by a set of 
quantitative statistical parameters which are the squared 
correlation coefficient R2, the standard deviation s, the Fisher 
F coefficient.[21]

The R2 squared correlation coefficient or coefficient of 
multiple determination is a quantitative measure of the 
precision of the adjustment for the values adjusted to those 
observed.

𝑅𝑅2 =  
∑ (�̂�𝑦𝑖𝑖 − �̅�𝑦)2

𝑖𝑖
∑ (𝑦𝑦𝑖𝑖 − �̅�𝑦)2𝑖𝑖

Where: 
yi is the experimentally obtained activity value for a 
compound in the training set.
ŷi is the predicted (fitted) or calculated activity value for a 
compound in the training set.
ȳ is the average of the experimental activities of the 
compounds in the data set to be examined.
R2 informs about how well or poorly the model reproduces 
the experimental data. Also, R2 should ideally be close to 1 
(unity). Indeed, the closer it is to 1, the more similar the fitted 
values are to the experimental ones, which suggests that the 
model fits the data unerringly.[14,22,23] 

The standard deviation s is given by the following relation:

𝒔𝒔 =  √∑ (�̂�𝒚𝒊𝒊 − 𝒚𝒚𝒊𝒊)𝟐𝟐𝒊𝒊
𝒏𝒏 − 𝒑𝒑 − 𝟏𝟏  

With 
p representing the number of descriptors.
n is the number of molecules in the database to be examined.
s measures the dispersion of the observed values with 
respect to the regression line. The smaller s is, the better the 
correlation is.[15, 22] 

Fisher’s F coefficient is the statistical parameter that 
measures the level of statistical significance of the model 
at “x%”.

𝑭𝑭 =  
∑ (�̂�𝒚𝒊𝒊 − �̅�𝒚)𝟐𝟐

𝒊𝒊
∑ (𝒚𝒚𝒊𝒊 − �̂�𝒚𝒊𝒊)𝟐𝟐𝒊𝒊

 ×  𝒏𝒏 − 𝒑𝒑 − 𝟏𝟏
𝒑𝒑  

The larger the F-value, the higher the probability that the 
equation is relevant. The equation is considered significant 
if the F-value is greater than the 95% tabulated value for a 
number of degrees of freedom (n-p-1). 

As for the robustness of our constructed model, i.e., the 
influence of the training set compounds on the model, it 
was checked by determining the cross-validation squared 
correlation coefficient R2

cv or Q2:

𝑸𝑸𝟐𝟐 = 𝟏𝟏 −  
∑ (𝒚𝒚𝒊𝒊 − ŷ𝒊𝒊/𝒊𝒊)𝟐𝟐

𝒊𝒊
∑ (𝒚𝒚𝒊𝒊 − �̅�𝒚)𝟐𝟐𝒊𝒊

 

Where 
yi is the experimentally obtained activity value for a 

compound in the training set from the cross-validation.
ŷi/i is the predicted (fitted) or calculated activity value for 

a compound in the training set by excluding the ith element 
in the model development.

ȳ is the average of the experimental activities of the 
compounds in the training set. [15,22,24] 

Thus, the QSAR model is considered “good” when Q2 ≥ 
0.5 and “excellent” when Q2 ≥ 0.9.[23,25] 

The ratio between R2 and Q2 was subsequently evaluated. 
The difference |R2 – Q2|< 0.3 should be met because this 

standard indicates that the number of descriptors involved 
in the QSAR model is acceptable.[23,26]

As for the external validation of the constructed model, it 
consisted in predicting the activity of the series of molecules 
of the test set. We determined the parameter R2 test, squared 
correlation coefficient determined for the validation set 
as well as other parameters known as “external validation 
criteria” or “Trophsa criteria”, which meet the following 
standards:[27]

• Q2> 0.5
• R2

test> 0.6
•  or 
• 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k’ ≤ 1.15

R0² and R’0²represent the coefficients of determination 
when the regression line passes through zero for the 
graphs predicted values versus experimental values and 
experimental values versus predicted values respectively. 
As for k and k’, they are respectively the slopes of these 
regression lines.[27] 
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Molecular Docking Methodology
The molecular docking procedure was used to investigate the 
binding interaction of the analogues in the binding pocket 
of the enzyme. The 3D crystal structure of the Leishmania 
phosphodiesterase B1 (PDB ID:  2JK6) was retrieved from 
the protein databank.[12] The protein preparation of 
Schrodinger suite was utilized to process the enzyme 
structure by assigning bond order, optimizing hydrogen 
bond k, creating zero bond order for metal and to form 
disulphide bond. The missing side chain and loops were 
filled using prime module while the water molecules 
beyond 5 Å were deleted. The structures of the top three 
bioactive benzimidazolyl-chalcones compounds were built 
in 2D sketcher of Schrodinger and prepared using ligprep. 
The grid was prepared using receptor grid generation as a 
centroid to search favorable binding between ligand and 
receptor molecule. The ligand in the active site was selected 
to generate the gird. The compounds were then docked into 
the active site of the target enzyme using standard precision 
(SP) mode of Glide.[28] The top-ranked conformation of each 
compound was used for further analysis.

MMGBSA Free Energy Calculation 
Molecular mechanics generalized Born surface area (MM-
GBSA) free binding energy of ligand-receptor complex has 
been calculated on the best SP docked poses using PRIME 
module of Schrödinger.

ADME Property Predictions
QikProp module of Schrodinger was used to predict the 
druggable property of three best hits by assessing the 
ADME profile. During this, the Lipinski rule of five and various 
descriptors like, QPPCaco, QPlogBB, MDCK, QlogS and % 
human oral absorption were calculated.

Molecular Dynamic Simulation Studies
A molecular dynamic (MD) simulation study was applied 
on the top hits for 30 ns obtained from the docking study 

and MM-GBSA calculation using Academic Desmond 
v6.5.[29] Three stages were done to perform this study: (a) 
System builder (b) Minimization (c) molecular dynamic 
simulation. For an SP docked complexes of 2JK6 and 
compound 4a-c, a predefined TIP3P solvent model was used 
to build a system model under orthorhombic boundary 
condition. A simulation study via NPT ensemble class at 
300 K and 1 bar pressure was carried on for the minimized  
model.

re s u lts A n d dI s c u s s I o n

Determined descriptors
The calculations of frequencies by the DFT B3LYP/6-31++G 
undertaken from these optimized structures, allowed to 
determine the descriptors reported in the Table 2.

The overall reactivity descriptors summarized in Table 3 
were calculated from those in Table 2.

The results of the determination of the LogP of each of 
the studied molecules are reported in the Table 4.

Training set and validation set
The pool of molecules studied was subdivided into training 
and validation sets summarized in Table 5.

Construction of the QSAR model
To build the QSAR model, we first proceeded to select the 
descriptors involved in the final model based on Vessereau’s 
criteria by calculating the linear regression and partial 
correlation coefficients between pairs of descriptors.

Thus, two descriptors meeting the stated criteria for our 
benzimidazolyl-chalcone series were selected. These are 
Log P and EA.

For these descriptors, R = 1.1664 and thus |R|≥ 0.5. Table 6  
gives the values of the partial correlation coefficients.

The partial correlation coefficient between these two 
descriptors is less than 0.7. These descriptors are therefore 
independent.

Table 2: Descriptors obtained by the DFT B3LYP/6-31++G

COMPOUNDS ELECTRONIC ENERGY (kcal) E HOMO (ev) E LUMO (ev) DIPOLE MOMENT μ (D) POLARIZABILITY (u.a)

4a -791499.97 -6.64 -2.90 8.06 256.93

4b -838706.02 -6.63 -2.89 9.27 262.94

4c -1079906.56 -6.69 -3.00 8.50 267.15

4d -919844.40 -6.78 -3.24 5.90 278.59

4e -816185.98 -6.50 -2.79 2.96 281.45

4f -1079908.73 -6.70 -3.03 6.38 277.44

4g -1368314.58 -6.74 -3.13 6.93 287.64

4h -790115.94 -6.39 -2.85 3.29 246.40

4i -801572.24 -6.74 -3.07 0.59 254.26

4j -853784.12 -6.71 -2.98 1.26 258.31

4k -1135965.00 -6.93 -3.38 3.84 372.33

4l -729275.33 -6.87 -3.16 7.93 329.57
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Table 3: Descriptors calculated from the descriptors obtained by the DFT B3LYP/6-31++G

COMPOUNDS η (ev) S (ev) μ ω
χ (ev) according to 
Mulliken ΔE IE (ev) EA (ev)

4a 1.86 0.53 -1.86 0.93 4.77 3.74 6.64 2.90

4b 1.87 0.53 -1.86 0.93 4.76 3.74 6.63 2.89

4c 1.84 0.54 -1.84 0.92 4.85 3.69 6.69 3.01

4d 1.77 0.56 -1.77 0.88 5.01 3.54 6.78 3.24

4e 1.85 0.53 -1.85 0.92 4.65 3.71 6.51 2.79

4f 1.83 0.54 -1.83 0.91 4.87 3.66 6.70 3.04

4g 1.81 0.55 -1.80 0.90 4.94 3.61 6.74 3.13

4h 1.77 0.56 -1.77 0.88 4.62 3.54 6.39 2.85

4i 1.83 0.54 -1.83 0.92 4.90 3.67 6.74 3.07

4j 1.86 0.53 -1.86 0.93 4.85 3.73 6.71 2.98

4k 1.77 0.56 -1.77 0.88 5.16 3.55 6.93 3.38

4l 1.85 0.54 -1.85 0.93 5.01 3.71 6.87 3.16

Table 4: Values of the partition coefficients of the studied molecules

Compounds Log P

4a 4.52

4b 3.93

4c 5.11

4d 4.25

4e 4.98

4f 5.11

4g 5.72

4h 3.68
4i 3.28

4j 4.57

4k 5.27

4l 3.64

Table 5: Summary of the training and validation sets

Training Game Validation Set

4a
4c
4d
4g
4h
4j
4l
4k

4b
4e
4i
4f

Table 6: Values of partial correlation coefficients between descriptors

EA (ev) Log P

EA (ev) 1 0.194

Log P 0.194 1

Figure 1: Linear regression curve of the theoretical data vs the 
experimental data of the benzimidazolyl-chalcone activities studied

Table 7 summarizes the data of the selected descriptors and 
the activities of the molecules in the training and validation 
sets.

Finally, the QSAR model established from the anti-
leishmanial descriptor-activity relationship of the training 
set of the studied benzimidazolyl-chalcones is given by the 
following equation:

× ×1
Log = 18.862 - 5.605 AE( ) + 0.819 Log 

c
ev P

Validations of the QSAR model 
Table 8 presents all the parameters calculated for the internal 
and external validation criteria for the developed QSAR model.

The parameters determined for the internal validation all 
meet the standards set for them. Thus, in view of these results, 
the equation of the QSAR model is significant (F being very 
high) and the constructed model presents a good agreement 

with the experimental data (R2 close to 1). These observed 
values show a high correlation with the linear regression 
line (S small). As for the robustness of this model, it presents 
an excellent stability towards the molecules of the training 
set (Q2

CV = 0.942) and the number of descriptors involved 
in the model is acceptable (R2 - Q2CV = 0.041). The QSAR 
model can therefore be validated with respect to internal  
validation.
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Table 8: Parameters determined for the internal and external validations of the developed QSAR model

QSAR model for the anti-leishmanial benzimidazolyl-chalcone series studied

Validation criteria Calculated parameters OECD standards

Internal validation 
(training set N=8)

R2 = 0.983 R2 close to 1

S = 0.921 S small

F = 146.668 F high

Q2
CV = 0.942 Q2 ≥ 0.9

R2 –Q2
CV = 0.041 |R2 – Q2| < 0.3

External validation: Trospha criteria  
(test game N=4)

Q2 = 0.942 Q2 > 0.5

R2
test = 2.57313632 R2

test> 0.6

2 '2
test 0

2
test

R - R
= 0.8

R

2 '2
test 0

2
test

R - R
< 0.1

R

k’ = 1.0239 0.85 ≤ k’ ≤ 1.15

Table 9: Ratio between theoretical and experimental values of 
biological activities in the validation set

Compounds Log(1/C)theo Log(1/C)exp Log(1/C)theo/Log(1/C)exp

4b 5.843 6.301 0.9

4i 4.329 4.860 0.9

4e 7.276 5.983 1.2

4f 6.011 4.609 1.3

Table 7: Molecular descriptors and activities of the training and test set

Compounds IC50(µM) Log(1/C) EA (ev) Log P

Training Set 4a 0.53 6.276 2.904 4.520

4c 0.47 6.328 3.009 5.110

4d 74.45 4.128 3.246 4.250

4g 1.79 5.747 3.137 5.720

4h 1.14 5.943 2.855 3.680

4j 1.33 5.876 2.986 4.570

4k 43.07 4.366 3.386 5.270

4l 100.80 3.997 3.162 3.640

VALIDATION SET 4b 0.50 6.301 2.897 3.930

4e 1.04 5.983 2.795 4.980

4f 24.59 4.609 3.040 5.110

4i 13.79 4.860 3.073 3.280

The values determined at the Trospha criteria level are 
supported by the data in Table IX and Figure 1.

This ratio tends to 1. This indicates a good correlation 
between the theoretical and experimental biological 
activities of the benzimidazolylchalcone series studied. The 
plot of predicted and experimental biological activities of the 
training and model validation sets is presented in Figure 1.

From the above regarding the Trospha criteria, the calculated 
parameters meet the set standards. According to Ouattara and 
Ziao, under these conditions, the QSAR model developed can 
be considered efficient in terms of activity prediction. [18] 

Interpretation of the developed QSAR model
The developed QSAR model highlights the influence of two 
descriptors in the activities of the studied molecules: the 
partition coefficient and the electro affinity. 

Thus, according to this QSAR model, the low values of 
the electronic affinity in absolute value coupled with high 
values of the partition coefficient should allow a better 
antileishmanial activity of these molecules.

However, it should be noted that these different 
descriptors are affected by positive and negative coefficients 
that impact the biological activity. Thus, a positive value of 
the coefficient indicates that an increase of the descriptor 
leads to an increase of the biological activity. Nevertheless, 
a negative value of the coefficient shows that an increase of 
the descriptor will rather lead to a decrease of the biological 
activity. 

We note therefore, taking into account these different 
coefficients that the electronic affinity must be negative in 
this case to give rise to an increase in antileishmanial activity.  
This is possible for substituents which capture electrons such 
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as halogens, phenoxyl, nitro. [30,31] The partition coefficient 
must be positive for an increase in said activity. This 
suggests that the constituent groups of our antileishmanial 
molecules are lipophilic. The antileishmanial activity of the 
benzimidazolyl-chalcones submitted to our study is therefore 
related to their lipophilicity and electron-withdrawal 
capacity. This could be taken into account in the elucidation 
of the mechanism of action related to the antileishmanial 
activities of these molecules. Indeed, it could be assumed 
that the lipophilicity of these active constituents favors 
their penetration into the amastigote forms of leishmanias 
(pathogenic forms) whose plasma membrane is rich in 
phospholipids [32], in which they would exert their action. As 
for their electron affinity, it would confirm the importance 
of the basic heterocyclic nature of these molecules, which 
would be essential for the induction of the antileishmanial 
properties of benzimidazolylchalcones, as well as for the 
induction of their antiplasmodial properties. [13]

The Figure 2 reveals the contribution of each parameter 
of the developed QSAR model on the obtained biological 
activity.

It reveals that the contribution of electronic affinity is 
more important than that of lipophilicity. The electronic 
affinity is therefore the priority descriptor in the description of 
the antileishmanial activities of the benzimidazolylchalcones 
studied. This would confirm its importance in their induction.

Thus, the benzimidazolylchalcones developed according 
to the QSAR model will have to present good basic 
and lipophilic properties to be active on Leishmani  
donovani.

Molecular Docking studies
The molecular docking was carried out to inspect the 
prospective interactions between the three most potent 
benzimidazolyl-chalcones and the active site of Leishmania 
phosphodiesterase B1. The binding energies of derivatives 
4a-c were found to span from -6.50 Kcal/mol to -6.24 Kcal/
mol at the binding site of 2JK6 indicate strong ligand 
receptor binding. Moreover, the docking results displayed 
that all the compounds were well accommodated in 
the active site of the  enzyme as depicted in Figure 3.  
From the docking conformation of the most potent 
analogues, compound 4c (IC50 =0.47 µM) was observed that 
this compound formed one hydrogen bond with SER 464 
and one pi-cation contact with LYS 61 of the binding pocket 
as displayed in Figure 3A. Moreover, 2-chlorophenyle atom 
moiety of compound 4c formed hydrophobic interactions 
with LEU 62, TYR 64 and LEU72. The strong bonding network 
of the compound with the residues of the active pocket might 
be one of the reasons to show excellent anti-leishmanial 
activity. The docking conformation of the second most 
active analogue 4b (IC50 = 0.50 µM) displayed one pi-cation 
contact with LYS61and two hydrogen bonds with SER and 
GLN 68 as shown in Figure 3 B. The docked conformation 
of the analogue 4a (IC50 =0.53 µM) exhibited one pi-cation 
contact with LYS 61 and one hydrogen bond with SER464 as 
presented in Figure 3C.

MMGBSA free energy calculation 
Binding free energy was calculated using prime MMGBSA 
module of Schrodinger to assess the stability of the ligand-
receptor complex. These MM-GBSA calculations consider the 
geometry of the ligand-receptor complex with the values of 
free ligand. More negative binding affinity value corresponds 
to stronger ligand-receptor complex. Compound 4c interacted 
with the receptor with binding energy -61.27 kcal/mol  
followed by 4b (-57.65 kcal/mol) and 4a (-56.22 kcal/mol) 
receptors (Table 5). These displayed good correlation with 
experimental activity values.

Figure 2: Contribution diagram of the different descriptors in the 
biological activity of the model

Figure 3: Molecular docking of receptor-binding domain of Leishmania phosphodiesterase B1 (PDB ID: 2JK6) with A) 4a, B) 4b and C) 4c

(A) (B) (C)
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ADME property predictions
Some imp or t ant  Computer-Aide d Pre dic t ion of 
Pharmacokinetic (ADME) Properties for the three compounds 
were evaluated using QikProp module of Schrodinger. Many 
basic physicochemical properties of these compounds were 
predicted. The values of those compounds were found in 
the recommended range as depicted in Table X. None of the 
three molecules violated any rule of five.

In addition, these molecules have acceptable aqueous 
solubility and high gastrointestinal absorption (≥ 90%). This 
predicts good oral bioavailability for these compounds.

Table 10: Docking, MMGBSA score and ADME properties of the top 3 compounds.

Molecules

Docking 
Score (kcal/
mol)

MMGBSA dG 
bind 
(kcal/mol) QPPCacoa QPlogBBb MDCKc

% Human oral 
absorptiond QPlog Se

Rule of
 five 

4a -6.246 -56.22 1510.44 -0.334 1904.14 100 -4.61 0

4b -6.505 -57.65 459.55 -0.939 526.39 91.27 -4.34 0

4c -6.400 -61.27 1542.99 -0.183 4132.53 100 -5.17 0
a Predicted caco cell permeability in nm/s (acceptable range: <25 is poor and >500 is great). Caco-2 cells are a model for the gut-blood barrier.
b Predicted blood brain barrier permeability (acceptable range -3–1.2).
c Predicted apparent MDCK cell permeability in nm/s (acceptable range in nm/s (acceptable range: <25 is poor and >500 is great). MDCK cells 
are a good model for the blood–brain barrier
d Percentage of human oral absorption (acceptable range: <25 is poor and >80% is high.
e Predicted aqueous solubility in mol/L (acceptable range -6.5 –0.5).

Figure 4: (A) protein-ligand root-mean-square deviation (RMSD) 
(B) protein root-mean-square fluctuation (RMSF) (C) protein-ligand 

contacts diagram of compound 4b seen during MD simulations

(C)

(A) (B) (A)

(C)

(B)

Figure 5: (A) protein-ligand root-mean-square deviation (RMSD) 
(B) protein root-mean-square fluctuation (RMSF) (C) protein-ligand 

contacts diagram of compound 4c seen during MD simulations

Figure 6: Summary of docking studies on the target: Leishmania 
phosphodiesterase B1 (PDB ID: 2JK6)

N
H

N
R5

O

Pyrrolic NH: hydrogen bond

R

Benzimidazole:
 π−π interaction

Chlorine in C5 of benzimidazole: 
better occupation of the hydrophobic 
pocket of the target

Certain substituents (Ex: OH): hydrogen bond
Molecular dynamic simulation
The dynamic behavior of compound at the binding cavity of 
the enzyme is crucial to evaluate the stability of that particular 
compound inside the binding site. A 30 ns molecular 
dynamics simulations of 2JK6 and compounds 4b and 4c 
complexes gives further insights into molecular interaction 
of these compounds in motion.

RMSD analysis of the 2JK6 protein and top two screened 
leads complexes revealed comparable deviation throughout 
the 30 ns long molecular dynamic simulations. RMSDs for 
4b-2JK6 stabilized around 2Å for 18 ns and increase thereafter 
to 2.8Å, however, it remained within the acceptable range  
(≤ 3Å) as shown in Figure 4A. The RMSD plot for 4c-2JK6 
(Figure 5 A) showed that the protein Cα stabilized during 
simulation after 18 ns at 2.8Å. During initial 18 ns, ligand 
RMSD value was 1.8 Å indicating its high stability compared 
to protein RMSD during this period. The overall RMSD of 
the two compounds in the protein in the binding region 
is stable. The per residue RMSF analysis of the complexes 
exhibited comparatively similar fluctuation patterns and 
did not display major fluctuations as depicted in Figures 4B 
and 5B. The detailed interaction fraction of the hydrogen 
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bonds, hydrophobic, water bridge interactions of 4b and 4c 
with 2JK6 is elaborated in Figure 4C and 5C. Hydrogen bonds 
have a significant contribution on the stability of 4b-2JK6 
than 4c-2JK6.

The structure-activity relationship studies undertaken in 
previous work established that the presence of halogen at C5 
on benzimidazole improves potency in vitro antileishmanial 
activities.[9] Furthermore, the C2 propenone chain of 
benzimidazole would be necessary for the appearance 
of activities. In addition, the presence of an ortho chloro 
substituent on the C3 phenyl of propenone, improves the 
antileishmanial activity. 

The Qsar studies revealed that the presence of electrophilic 
substituents such as halogens (Cl), hydroxyl or nitro on the 
benzimidazolyl-chalcone would enhance the negativity of 
the electron affinity of the molecules which would contribute 
to increase their antileishmanial activities. In addition, the 
increase in overall lipophilicity would increase the partition 
coefficient of the molecules which would be beneficial to the 
antileishmanial activities in this series.

Molecular docking studies performed on the three 
best molecules (4a, 4b and 4c) suggest that the excellent 
antileishmanial activities would be promoted by different 
interactions involving the benzimidazole ring. Indeed, the 
best compound 4c formed 2 key interactions at the active 
site namely a π-π interaction established through the 
benzimidazole ring at LYS B 61 and a hydrogen bonding 
through the pyrrolic nitrogen of this heterocycle at SER A: 464. 
Moreover, its chlorine atom in C5 of the benzimidazole allows 
a better occupation of the hydrophobic pocket. Another 
interaction by hydrogen bonding thanks to the phenolic 
OH of the phenylpropenone chain at the level of GLN A 68 
probably increases the residence time of certain derivatives 
such as 4b in the active site. However, this last interaction 
would have only a marginal role on the global activity of the 
molecules of this series (Figure 6). In addition, compound 
4c exhibited the most favorable binding free energy (-61.27 
kcal/mol) in the Leishmania phosphodiesterase B1 binding site 
compared to the other derivatives (Table 10). 

Thus, the QSAR, docking and other molecular dynamics 
studies performed in the present study partially corroborated 
the results of the SAR studies and provided valuable 
information for the development of benzimidazolyl-chalcone 
derivatives against leishmaniasis.

co n c lu s I o n

In this study, the aim was to build a QSAR model around a 
series of benzimidazolyl-chalcone compounds with anti-
leishmanial targets. In addition, the molecular docking, 
MMGBSA, and molecular dynamics studies were carried out 
on compounds with the best activities allowed us to highlight 
the strength of the interactions of the substituents with the 
molecular target as well as their stability. Pharmacokinetic 
prop er t ies  analysis  of  the selec ted comp ounds 
revealed the drug-like property of the lead compounds.  

Our results suggested lipophilicity and electron affinity as 
predictors of the activity of these benzimidazolyl-chalcone 
derivatives against Leishmania donovani. Moreover, the 
control of the electronic affinity, the basic properties 
of this series, appears to be essential in the exaltation 
of the antileishmanial activities. This work is consistent 
with the SAR made in our previous work and gives us an 
orientation for the design of new analogues more active 
on Leishmania donovani. These will have to present in their 
respective structures key groups such as chlorine, phenyl 
or phenoxyl to have an optimal activity. These findings 
play an important role in understanding the relationship 
between the physicochemical parameters of the structure 
and the biological activity. The analysis and use of the QSAR 
model coupled to the information given by the ligands-
protein interactions and the stability of the interactions 
through molecular docking, MM-GBSA, molecular dynamics, 
enabled to select the appropriate substituent and design 
new compounds with improved biological activity. Finally, 
molecular dynamics simulation studies at 30 ns display stable 
interactions with the protein.

re f e r e n c e s

1.  Aponte JC, Castillo D, Estevez Y, Gonzalez G, Arevalo J, 
Hammond GB, et al. In vitro and in vivo anti-Leishmania 
activity of polysubstituted synthetic chalcones. Bioorg 
Med Chem Lett. 2010;20(1):100-103. 

2.  Elmagd ARAA. Synthesis and Medicinal Significance of 
Chalcones-A Review. Asian J Biomed Pharm Sci. 2016;6(52 
):1-7. 

3.  Mahama O, Aboudramane K, Soleymane K, Sylvain C, 
Sekou D, Drissa S. Anticancer Activities and QSAR Study of 
Novel Agents with a Chemical Profile of Benzimidazolyl-
Retrochalcone. Open J Med Chem. 2020;10(03):113-127. 

4.  Athanasios V and Thomais V. Studies in Natural Products 
Chemistry: Chapter 8. Plant Polyphenols: Recent Advances 
in Epidemiological Research and Other Studies on Cancer 
Prevention. Edited by Atta-ur-Rahman. 2013;39: 269-295. 

5.  Ouattara M, Sissouma D, Yavo W, Kone M. Synthèse et 
criblage antiplasmodial de quelques benzimidazolyl-
chalcones. Int J Biol Chem Sci. 2015;9(3):1697-1710. 

6.  N’Ta CA. Synthèse d’analogues de la pentamidine 
porteurs de plateformes hétérocycliques (rhodanine, 
benzimidazole, pyrazole et imidazole) et leurs évaluations 
biologiques. Université Rennes 1; Université Nangui 
Abrogoua, 2015. (NNT: 2015REN1S137). (tel-01665809)

7.  Nieto-Meneses R, Castillo R, Hernández-Campos A, 
Maldonado-Rangel A, Matius-Ruiz JB, Trejo-Soto PJ, et al. 
In vitro activity of new N-benzyl-1H-benzimidazol-2-amine 
derivatives against cutaneous, mucocutaneous and 
visceral Leishmania species. Exp Parasitol. 2018;184:82-89. 

8. Nagle AS, Khare S, Kumar AB, Supek F, Buchynskyy 
A, Mathison CJN, et al. Recent Developments in 
Drug Discovery for Leishmaniasis and Human African 
Trypanosomiasis. Chem Rev. 2014;114(22):11305-11347. 



Molecular Modeling Studies of Benzimidazolyl-Chalcones as Antileishmanial Agents

Journal of Applied Pharmaceutical Sciences and Research, July-September, 2021; 4(3)28

9.  N’Guessan DUJP, Kablan LAC, Kacou A, Bories C, Coulibaly 
S, Sissouma D, Loiseau PM, Ouattara M. Synthesis and 
biological profiles of some benzimidazolyl-chalcones 
as anti-leishmanial and trypanocidal agents. Chemical 
science international journal. 2021; 30(8): 47-56.

10. Luan F, Cordeiro MNDS. Overview of QSAR Modeling in 
Rational Drug Design. in Recent Trends on QSAR in the 
Pharmaceutical Perceptions. Bentham science publishers; 
2012;(48):194-241.

11. Ochoa R, García E, Robledo SM, Cardona W G. Virtual and 
experimental screening of phenylfuranchalcones as 
potential anti-Leishmania candidates, Journal of Molecular 
Graphics and Modeling. 2019;(91):164-171

12. QikProp, version 3. 6, 2013. Schrödinger, LLC, New York.
13.  Ouattara M, Sissouma D, Yavo W, Kone M. Synthèse et 

criblage antiplasmodial de quelques benzimidazolyl-
chalcones. Int J Biol Chem Sci. 2015;9(3): 1697-1710. 

14.  Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug 
design--a review. Curr Top Med Chem. 2010;10(1):95-115. 

15. Chtita S, Bouachrine M, Tahar L. Modélisation de molécules 
organiques hétérocycliques biologiquement actives 
par des méthodes QSAR/QSPR. Recherche de nouveaux 
médicaments. Chimie théorique et/ou physique. Faculté 
des sciences,Université Moulay Ismaïl, Meknès, 2017.  
(tel-01568788)

16. Babu NS, Jayaprakash D. Global and Reactivity Descriptors 
Studies of Cyanuric Acid Tautomers in Different Solvents 
by using of Density Functional Theory (DFT). Int J Sci Res 
IJSR. 2015;4(6):615-620. 

17. Vessereau A. Méthodes statistiques en biologie et en 
agronomie. Paris: Lavoisier; 1992. 

18. Ouattara O, Ziao N. Quantum Chemistry Prediction of 
Molecular Lipophilicity Using Semi-Empirical AM1 and 
Ab Initio HF/6-311++G Levels. Computational Chemistry. 
2017, 05(1):38-50

19. Weisberg S. Applied Linear Regression, Third Edition. 
Published by John Wiley & Sons, Inc., Hoboken, New 
Jersey. 2005; 1- 292.

20.  Roy K, Kar S, Das RN. Statistical Methods in QSAR/QSPR. 
In: A Primer on QSAR/QSPR Modeling. Cham: Springer 
International Publishing. 2015;37-59. 

21.  Tareq HKM. Overview of QSAR Modeling in Rational Drug 
Design. In: Recent Trends on QSAR in the Pharmaceutical 

Perceptions.  Bentham science publishers .  2012; 
194-241. 

22.  Organization for Economic Cooperation and Development 
(OECD), Guidance Document on the Validation of (Quantitative) 
Structure-Activity Relationship [(Q)SAR] Models, OECD Series 
on Testing and Assessment, n° 69, Éditions OCDE, Paris, 
Environment Health and Safety Publications, 2014. https://
doi.org/10.1787/9789264085442-en.

23.  Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell 
RM, Gramatica P. Methods for Reliability and Uncertainty 
Assessment and for Applicability Evaluations of 
Classification- and Regression-Based QSARs. Environ 
Health Perspect. 2003;111(10):1361-75. 

24. Prana V. Approches structure-propriété pour la prédiction 
des propriétés physico-chimiques des substances 
chimiques. Thèse de doctorat en Chimie théorique et 
informatique, Pierre et Marie Curie; 2013, 1- 208.

25. Tichý M, Rucki M. Validation of QSAR models for legislative 
purposes. Validation of QSAR models for legislative 
purposes. Interdisciplinary Toxicology. 2009;2(3):184-186

26. Ravichandran V, Harish R, Abhishek J, Shalini S, Christapher 
PV, Agrawal RK. Validation of QSAR Models - Strategies 
and Importance. Int J Drug Des Discov. 2011;2(3): 
511-519. 

27.  Golbraikh A, Tropsha A. Predictive QSAR modeling based 
on diversity sampling of experimental datasets for the 
training and test set selection. J Comput Aided Mol Des. 
2002;16(5-6):357-369. 

28. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, 
Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M, 
Perry JK, Francis P, Shenkin PS. “Glide: A New Approach 
for Rapid, Accurate Docking and Scoring. Method and 
Assessment of Docking Accuracy,” J. Med. Chem., 2004; 47: 
1739–1749.

29. Desmond Molecular Dynamics System, D. E. Shaw 
Research, New York, NY, 2021. 

30. Lide DR. CRC handbook of chemistry and physics. CRC 
Press; 1995. 

31. Kotz JC, Treichel P, Townsend JR. Chemistry & chemical 
reactivity. 7th ed. Belmont, CA: Thomson Brooks/Cole. 
2009. 1095 p. 

32. Filippi C, Malherbe L, Julia V, Glaichenhaus N. L’immunité 
contre les leishmanies. Médecine Sci. 2001;17(11):1120-1128.


